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1. Background 

1.1 Existing Objective Measures of Speech Intelligibility 
There are a number of objective measures of speech intelligibility (SI).  The current American 
national standard addressing SI (American National Standards Institute [ANSI] S3.5, 1997) 
refers to the two most common objective measures of SI:  speech intelligibility index (SII) and 
speech transmission index (STI).  Other objective measures of SI include percentage articulation 
loss of consonants (%ALcons)1 and the direct-to-reverberant energy ratio. 

The SII described in ANSI S3.5 (1997) is a revision of the articulation index (AI) found in the 
previous version (ANSI, 1969).  AI was developed at Bell Labs in the late 1940s and is based on 
the proportion of the speech energy to the noise energy in a number of frequency bands.  The 
number of bands and center frequencies of the bands differ in various implementations of the 
standard (e.g., French & Steinberg, 1947; Beranek, 1947; Fletcher & Galt, 1950; Kryter, 1952; 
Mueller & Killion, 1990; Pavlovic, 1991).  The signal-to-noise ratio (SNR) in each frequency band 
is multiplied by an importance function for that band, based on the usefulness of information in this 
band to speech intelligibility, and the resulting index is a value between 0 and 1 representing the 
proportion of speech information that is audible.  AI was the sole method described in the earlier 
standard, whereas it is one of two methods described in the SII.  The SII differs from AI in that the 
weightings given to relative importance of various frequencies to speech intelligibility have been 
revised for improved accuracy.  The SII also includes parameters to adjust for upward spread of 
masking and the standard speech spectrum level.  In addition, the SII calculation details have been 
adapted to computer implementation rather than to manual chart-type computations.   

STI was developed in the TNO2 Laboratory in Holland by Steeneken and Houtgast (Steeneken & 
Houtgast, 1980; Houtgast, Steeneken, & Plomp, 1980) and is based on the SNR and impulse  
response of the transmission system.  The STI model uses a test signal that has a speech-shaped 
spectrum and is modulated at a number of frequencies.  At the receiving end of the communication 
system, noise, signal distortions, and reverberation in the system decrease to some extent the depth  
of each individual modulation frequency.  Reductions in the modulation depth are associated with 
loss of intelligibility.  We measure the changes in the depth of modulation by calculating a modu-
lation transfer function (MTF) for each modulation frequency in each of a number of specific 
frequency bands.  The resulting MTF values are converted into “equivalent speech-to-noise ratios”  
that are combined to form the STI, which is similar to the AI and can vary from 0 to 1 (Wijngaarden 
& Houtgast, 2004).  SII incorporates STI for those situations in which SII is inappropriate.  For 
example, STI is more appropriate for the measurement of SI in reverberant environments. 

                                                 
1This machine measure of intelligibility is computed from measurements of the direct-to-reverberant energy ratio 

and early decay time and is specified in percent. 
2TNO = Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek. 
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Most objective measures predict SI quite accurately for the middle range of intelligibilities between 
20% and 80% (Hargus & Gordon-Salant, 1995; Humes, Boney, & Loven, 1987; Steeneken & 
Houtgast, 2002).  However, their usefulness is limited by a number of factors.  First, the current 
objective measures of SI must be adjusted to account for the kind of speech material used.  For 
example, SII (ANSI, 1997) has different importance functions for nonsensical syllables and mono-
syllabic words (NU-6, Northwestern University Auditory Test No. 6, Tillman & Carhart, 1966; 
CID W-22, Central Institute for the Deaf, Hirsh et al., 1952; DRT, Diagnostic Rhyme Test, Fair-
2banks, 1958; and MRT, Modified Rhyme Test, House, Williams, Hecker, & Kryter, 1963) and 
short passages (CST, Connected Speech Test, Cox, Alexander, & Gilmore, 1987, and SPIN, Speech 
Perception in Noise, Kalikow, Stevens, & Elliott, 1977).  There is an option to adjust SII, depend-
ing on the vocal effort of the talker.  Some but not all objective measures account for the acoustic 
characteristics of the space in which speech occurs.  For example, AI does not account well for 
moderate or severe reverberation in the environment.  In the case of reverberant environments, the 
use of STI is more appropriate because reflected energy reduces the depth of modulation in the test 
signal and is thus accounted for by this index.  The changes in AI, now called SII, improve its 
performance in reverberant environments by the incorporation of STI. 

Note, too, that AI, STI, and SII are all indices and are not intended to directly predict SI.  Instead, a 
transfer function is needed to convert the index scores to the predicted SI in percent correct.  The 
transfer functions are included in the most recent ANSI standard for a number of common types of 
speech material. 

1.2 How Binaural Measurement Can Improve Objective Tests 

SI is affected by the location of the listener relative to the speech and the noise sources in the 
environment.  When one is listening binaurally, changes in these relationships and the orientation 
of the human head affect SI.  However, current objective measures of SI are based on measure-
ments taken from a single microphone.  These SI measures are essentially assuming monaural 
listening in the background of non-directional noise, and the resulting predictions can be con-
sidered the worst case scenario for SI.  Although such worst case scenario data are sometimes very 
valuable, they are not realistic in terms of predicting the actual SI experienced by a human listener 
with two ears and may lead to incorrect and costly technical and operational decisions.   

More specifically, the two measures described in ANSI (1997) require that both the target speech 
and the noise be co-located or omnidirectional.  As a result, the actual SI data obtained will differ 
from the predicted data, depending on whether these requirements are met.  Further, it would 
seem that these requirements are a special case, that noise in most real-world environments is not 
completely diffuse or co-located with the talker3.   

Considerable experimental evidence shows an advantage in speech perception for binaural over 
monaural listening (Drennan, Gatehouse, & Lever, 2003; Drullman & Bronkhorst, 2000; Gallun, 
                                                 

3In fact, one can predict that most talkers would be intelligent enough to move away from the noise source if it 
were possible! 
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Mason, & Kidd, 2005).  The binaural advantage is thought to be attributable to several separate 
effects (Culling & Summerfield, 1995; Edmonds & Culling, 2006; Freyman, Balakrishnan, & 
Helfer, 2001; 2004).  First, the listener can take advantage of the ear that is nearest to the target 
speech and farthest from the distracting noise and move his or her head appropriately.  Second, 
the listener can take advantage of localization cues that allow him or her to spatially segregate 
the target speech from the noise.  Further, the auditory system is able to correlate information 
from each ear to reduce masking from reverberation (Libbey & Rogers, 2004).  These factors 
result in speech perception that is better than that predicted by monaural measurement methods 
and their associated indices, especially during the testing conditions specified in existing 
standards. 

1.3 Purpose and Objective 

Natural human listening involves two ears.  Therefore, objective measures of SI based on measure-
ment from a single microphone are not likely to predict SI accurately for various spatial conditions 
and SNRs.  Conversely, they are likely to under-predict human performance in low SNR condi-
tions, such as those experienced by the Soldier or other person in a noisy environment.  An objec-
tive measure of speech intelligibility that uses binaural input and information about the surrounding 
space and thus more closely accounts for the capability of human hearing, would be more realistic, 
accurate, and useful in predicting SI performance in real-world environments.   

In order to create an objective measure of SI, the information needed by the listener in order to 
accurately recognize speech must be determined.  Speech is a time-varying complex sound 
resulting from changes in the shape and actions of the vocal mechanisms of the talker.  In order  
to process speech, the listener must extract spectral (frequency content) and temporal (timing) 
information from the sound waveform.  In noisy environments, the sound arriving at the listener’s 
ears contains not only speech energy but also non-speech energy or noise that adversely affects 
the perception of speech.  Because listeners must use selective information within a noisy signal 
in order to discern the speech from the noise, speech recognition can be treated as a problem 
requiring analytical listening. 

Noise is an unwanted signal that masks speech signals and interferes with speech recognition.  
Masking of one sound by another has two forms: energetic and informational (Best et al., 2005).  
Energetic masking occurs when the energy contained in the competing sound signal masks the 
energy contained in speech.  Energetic masking is thought to be the primary source of masking 
when speech occurs in the presence of a stationary background noise with characteristics similar 
to white or pink noise.  The amount of energetic masking is primarily related to SNR and spectro-
temporal properties of both speech and noise.  Informational masking is additional masking that 
cannot be accounted for by energetic masking and is thought to be caused by cognitive and 
attentional aspects of noise.  Masking noises that have a form of another speech signal, attractive/ 
emotional music, sound effects, and sporadic unexpected impulse noises are strong informational 
maskers.   
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Previous measures of SI have focused on the effects of energetic masking, in large part because 
they are based on models of the effect of the physical characteristics of noise on perception of 
spectro-temporal speech information.  However, even in the presence of what is considered to be 
purely energetic maskers, SI varies significantly as a function of the speech material used, the 
talker reading the material, and the acoustic characteristics of the environment.  The higher level 
cognitive processes that are thought to cause informational masking cannot be accounted for solely 
by physical measurements of the sound field.  Modeling of informational masking requires several 
additional layers of information about the listeners beyond the information about their hearing 
ability.  However, several elements of informational masking are highly dependent on binaural 
listening and therefore, any serious attempt to model the effects of informational masking on SI 
must consider binaural listening.  This constitutes an additional challenge in developing an 
objective binaural measure of SI. 

To a large extent, the effects of reverberation have also been disregarded in speech intelligibility 
metrics.  Almost all real-world environments contain some degree of reverberation, and this 
affects speech recognition.  The incorporation of reverberation into a speech intelligibility index 
is critical to accurately predicting human performance.   

The objective of the current study was to model monaural and binaural speech recognition of the 
CID W-22 test items as a function of the physical characteristics of the signals arriving at two ears 
of the listener during one set of specific spatial conditions and two degrees of reverberation.  To 
develop the model and to assess its goodness of fit, a set of human performance data was collected 
during the same environmental conditions as considered in the model.  Thus, the study involved 
determining the performance intensity (PI) function for the W-22 speech test during specific test 
conditions, fitting the model to the test data, and assessing its goodness of fit.  A very high good-
ness of fit for this limited set of data was considered the first step in the development of the future 
more flexible and robust model based on the same algorithm.    
 

2. Method Used to Collect Human Performance Data for W-22 Items 

Both modeling and validation of the new binaural SI measure addressed in this study required 
creation of special monaural and binaural W-22 sound files containing speech and noise to create 
various SNRs used in the study.  Four SNRs and two reverberant (RT) conditions were used in 
the study.  Together with monaural and binaural modes (MODE), these conditions resulted in 16 
W-22 recordings.  
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2.1 Recording System 
Figure 1 shows a diagram of the recording system used to create sound files for the study.  A 
Knowles Electronic Manikin for Acoustic Research (KEMAR4) with two microphones situated  
at the position of the eardrums was placed in the center of a small sound-treated booth.  A mono-
phonic microphone was positioned just above the head of the KEMAR pointed toward the front.  
Two loudspeakers delivering speech and noise signals were placed 1 meter away from the center 
of the KEMAR head at ±45 degrees’ azimuth.  Technical specifications of the recording session 
follow. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Recording system used to create sound  
files for the study.  

2.2 Speech Material 

The speech material was the “Auditec of Saint Louis” recording made by a male talker reading 
words from four CID W-22 lists (Hirsh et al., 1952).  Each list consists of 50 phonemically 
balanced, monosyllabic English words.  All recorded words had been leveled to produce the same 
peak root mean squared (rms) reading.  These recordings were played back by a small Mission 780 
loudspeaker (5-inch bass driver and 1-inch high range driver) with a frequency response rated to be 
65 Hz to 20 kHz (±3 dB).  This loudspeaker was chosen to mimic the directivity of speech and was 
placed 1 meter from the center of the KEMAR head at an angle of +45 degrees from the head 
median plane, as shown in figure 1.  The output of the loudspeaker was calibrated with a 01dB 
Symphonie5 system (Symphonie sound card and dbfa software) and a Microtech Gefell measure-
ment microphone (sensitivity = 41.2 mV/Pa; frequency response = 3.5 Hz-20 kHz [± 2dB]).  This 
same microphone was used as the monophonic microphone in the study (see figure 1).  The 
calibration signal was a concatenated sample of several speech items spliced together.  The 

                                                 
4Knowles Electronic Manikin for Acoustic Research is a trademark of Etymotic Research, Elk Grove Village, 

Illinois. 
501dB Symphonie and dbfa are trademarks of 01dB-metravib, Limonest Cedex, France. 
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reproduction system was adjusted to produce a speech signal at 70 dB sound pressure level (SPL) 
at the monophonic microphone location.   

2.3 Background Noise 

A 5-minute looped recording of pink6 noise was played from a large PSB7 Stratus loudspeaker (10-
inch bass driver, 6-inch mid-range driver, and 1-inch tweeter).  The on-axis frequency response is 
rated to be 31 Hz to 21 kHz (±3 dB).  The loudspeaker was placed 1 meter from the center of the 
KEMAR head at an angle of -45 degrees from the head median plane, as shown in figure 1.  The 
noise level at the loudspeaker output was calibrated with the same equipment as before and set at 
four intensity levels of 70, 73, 76, and 79 dB SPL in order to create the four SNRs of 0, -3, -6, and 
-9 dB used in the study. 

2.4 Monaural and Binaural Test Recordings 

2.4.1 Monaural Recording 

The Microtech Gefell measurement microphone was placed approximately 2 inches above the 
KEMAR head, facing 0 degrees’ azimuth.  Its output was connected to the laptop computer via 
the 01dB Symphonie sound card, and the dbfa software was used to make the recordings. 

2.4.2 Binaural Recording 

Two Etymotic ER-11 microphones (sensitivity = 50 mV/Pa; frequency response = 250 Hz to  
10 kHz [±2.5 dB]) were placed in the KEMAR ears to make the binaural recordings.  The micro-
phones were also connected to a laptop computer identical to the one used for the monaural 
recordings via a 01dB Symphonie sound card, and the dbfa software was used to make the 
recordings.  

2.5 Reverberation 

The binaural and monaural recordings at all SNRs were convolved with the impulse response of  
a large hall (the “church” pre-set in Adobe Audition8 software: RT60 = 1.5 s) to create two rever-
berant conditions (RT = 0 s and RT = 1.5 s).  RT = 0 s means that no reverberation was added to 
the recordings.  

 

                                                 
6Pink noise is random noise for which there is equal energy in all octaves. In terms of power at a constant 

bandwidth, pink noise falls off at 3 dB per octave. 
7not an acronym 
8Adobe and Audition are registered trademarks of Adobe Systems, Inc. 
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2.6 Human Performance Data 

2.6.1 Participants 

Twelve adults, aged 18 to 40 (mean = 29 years) with symmetrical normal hearing, volunteered to 
participate in the study.  The participants were recruited from both the Government work force at 
the Aberdeen Proving Ground, Maryland, and the civilian population in surrounding communities.  
Each listener had pure-tone air conduction hearing thresholds ≥20 dB HL (hearing level) at octave 
frequencies from 250 through 8000 Hz (ANSI, ) and no history of otologic pathology.  The 
difference between pure-tone threshold HLs in both ears was no greater than 10 dB at any test 
frequency.  

2.6.2 Experimental Task 

Participants were presented with an individual word and instructed to use a computer interface to 
select the word heard from a list of 50 words.  After selecting the word, the participant clicked on 
another computer button to initiate the presentation of the next word.  All words for a particular 
list and condition were presented, with no repetitions in a single block. 

2.6.3 Counterbalancing of Stimuli 

There were 64 lists of stimuli (four lists of words × two MODEs × four SNRs × two RTs).  Each 
listener heard one list of words in each of the 16 (4 SNRs × 2 MODEs × 2 RTs) conditions.  A 
Latin square design was used to create a set of lists by the assignment of one of the four lists to 
each condition so that all four lists were used at each SNR level and so that no list was heard in a 
particular condition more than once (see table 1 for an example).  Four such sets were made and 
each participant was assigned one of these sets so that each set was used for three participants.   
The lists in a set and items within each list were presented in a different random order for each 
participant. 

Table 1.  Sample counterbalanced design. 

 Monaural Binaural 
SNR (dB) RT=0 RT=1.5 RT=0 RT=1.5 

0 List 1 List 4 List 2 List 3 
-3 List 2 List 1 List 3 List 4 
-6 List 3 List 2 List 4 List 1 
-9 List 4 List 3 List 1 List 2 

 

2.6.4 Apparati 

The words were saved as individual sound files and presented by computer via AKG9240F 
headphones.  All sound files were inversely filtered to remove the frequency effects of the 

                                                 
9AKG is a trademark of AKG Acoustics GMBH, Vienna, Austria. 
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headphones before the items were presented to the listeners.  A Symetrix10 SX204 headphone 
amplifier was used to control the level of presentation.  A Casella CEL11 Ltd12 573.C1R sound 
level meter attached to a Brüel & Kjær (B&K) 4153 artificial ear13 was used to calibrate the level 
of the 0 SNR recording of background noise (without speech) so that it measured 70 dB SPL  
when played from the headphones.  For the binaural conditions, listeners were presented with the 
recordings made through the two ears of the KEMAR in the same setup as the KEMAR head  
had been during the recordings.  For the monaural conditions, listeners were presented with the 
recordings made through the monophonic microphone above the head of the KEMAR, which was 
split to both ears (split monaural). 

2.6.5 Test Data 

The human performance data are shown in figure 2.  For a given SNR, listener performances were 
much better for the binaural (dichotic) conditions than for the split monaural (diotic) conditions.  
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Figure 2.  Percent correct obtained by human listeners for each of the four experimental conditions at each SNR. 

 

                                                 
10Symetrix is a trademark of Symetrix, Inc., of Mountlake Terrace, Washington. 
11not an acronym  
12Casella CEL Ltd is a trademark of Casella, Amherst, New Hampshire. 
13Artificial Ear Type 4153 is a trademark of Brüel & Kjær Sound & Vibration Measurement A/S, Denmark. 



9 

3. Methods Used to Collect Human Performance Data on Callsign Acquisition 
Test (CAT) Items 

In the initial stage of model development, before collection of W-22 data, the model algorithm  
was tested with previously collected data on speech recognition obtained with the CAT (Rao & 
Letowski, 2006).  The purpose of using the CAT data was to get an early indication of how the 
algorithm “behaved” for different test conditions.  Since there were significant differences in the 
data collection methods between the CAT and W-22 data, the following sections describe how the 
CAT data were obtained. 

3.1 Recordings 

The speech material was an in-house recording made by a male talker reading phrases of the CAT 
(Blue, Ntuen, & Letowski, 2004; Rao & Letowski, 2006).  The CAT consists of 126 test items.  A 
single test item (or call sign) consists of a word selected from a set of 18 two-syllable words taken 
from the military phonemic alphabet (Alpha-Zulu) and a number selected from a set of seven one-
syllable digits (1 to 8 except 7) resulting in a three-syllable phrase, e.g.,  Bravo Five.  The recorded 
words were equalized to produce the same peak rms values and filtered to remove the frequency 
shaping that occurs through the use of headphones.   

Three background noises were used in collecting the CAT data:  white noise, pink noise, and 
speech babble.  The sound pressure level of the test items was set at 70 dB.  The level of the 
background noise was then adjusted to create 3 SNR levels:  -6, -9, and -12 dB.  The speech and 
noise materials were presented diotically14 over headphones.  An IBM15 personal computer and 
custom in-house software were used to control presentation order of the test items and to collect 
listeners’ responses.  The talker and the computer software were the same as later used in W-22 
recordings and testing.  More information about recordings and testing procedure used in the CAT 
study is presented in Rao and Letowski (2006). 

3.2 Human Performance Data 

3.2.1 Participants 

A group of 18 listeners between the ages of 18 and 25 participated in the study.  The participants 
were recruited from both the Government work force at the Aberdeen Proving Ground, Maryland, 
and the civilian population in surrounding communities.  Hearing criteria were as described in 
section 2.6.1.   

                                                 
14That is, the same signal is presented to both ears.  Normal listening is dichotic because the signal arriving at 

each ear is slightly different. 
15International Business Machines 
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3.2.2 Apparati 

The words were saved as individual sound files and presented by computer via AKG240F head-
phones.  A Symetrix SX204 headphone amplifier was used to control the level of presentation.  A 
01dB Symphonie sound card and dbfa software attached to a B&K 4153 artificial ear were used to 
calibrate the level of the 0 SNR recording of background noise (without speech) so that it measured 
70 dB SPL when played from the headphones.   

3.2.3 Test Data 

The human performance data obtained in the CAT study by Rao and Letowski (2006) are shown 
in figure 3.  For a given SNR, white noise was found to be the easiest listening condition and 
pink noise was found to be the most difficult.   
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Figure 3.  Percent correct obtained for the CAT test as a function of SNR for three different background noises. 

 

4. Modeling Speech Intelligibility as Function of SNR 

Speech intelligibility is generally defined as the percentage of test items recognized correctly (PC).  
When PC is obtained and graphed as a function of SNR, the resulting performance intensity (PI) 
function can be described as a sigmoid function having extremely high PC values at positive SNRs 
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and PC values close to 0% at negative SNRs.  The standard logistic function (see appendix A) 
describing this curve is  

 ate
tPC

−+
=

1
1)(  (1) 

The function PC(t) describes a sigmoid that varies between 0 and 1 as a function of an indepen-
dent variable, t.  The parameter a determines the transition rate or the slope of the function. When  
t is equal to 0, the PC(t) = 0.5.  In order to describe a PI function ranging from 0% to 100%, the 
right side of equation 1 is multiplied by 100.  Further, the addition of a parameter a0 allows the 
50% value to be offset from t = 0. This can be expressed as  

 taae
tPC

101
100)( ++

=  (2) 

In the equation 2, a0 determines the sigmoid’s offset from 0 and a1 determines its slope. 

When a sigmoid function is used to model speech recognition data as a function of SNR, the SNRs 
are typically expressed in decibels which are base 10 logarithms of the actual SNR.  In such cases, 
it is preferable to replace the natural logarithm base “e” in equation 2 by the decimal algorithm 
base “10”.  One such modified function is shown as equation 3.  Equation 3 is equivalent to 
equation 2 except that the a0 and a1 in equation 3 are equal to the a0 and a1 in equation 2, divided 
by a constant. 

 )( 10101
100)( taatPC

+−+
=  (3) 

As mentioned before, the SNR can be expressed as a logarithmic transformation of the ratio of the 
speech energy to the noise energy within a signal, written as  

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

2

2

10log10
noise

speechSNR
σ

σ
 (4) 

in which 2
speechσ  is the sample variance of the speech and 2

noiseσ  is the sample variance of the noise.  

In reality, people do not listen for the noise and speech separately but instead listen for the speech 
within the entire signal.  The percentage of speech energy 2

speechσ  within the entire signal energy 
22
noisespeech σσ +  can be written in terms of the SNR as 

 100)( 22

2

×
+

=
noisespeech

speechSNRPC
σσ

σ
. (5) 

If one solves for 2
speechσ  in equation 4 and substitutes this into equation 5, the result can be 

rewritten as  
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 )(SNRPC  = SNR1.0101
100

−+
 (6) 

Note that equation 6 has a form similar to equation 3 and has a value of 50% at an SNR of 0 dB.  
However, for different speech or testing conditions, the transition between 0% and 100% intelli-
gibility may occur across different SNRs and at a different rate.  Therefore, in order to express PC 
as a function of SNR, the above function must be modified to account for the shift in the 50% 
value along the SNR axis and for changes in the transition rate of speech perception.  This modi-
fied function can be written to parallel function 3 and have a form 

 )( 10101
100)( SNRaaSNRPC

+−+
= , (7) 

in which the 0a  parameter is the offset value for PC = 50% in respect to SNR = 0 dB and the 1a  
parameter is the transition rate (slope) of the curve at PC = 50%.  This equation can then be used 
to model speech perception as a function of SNR. 

In order to accurately model human speech recognition performance, it is desirable to have data 
points that describe the entire range of accuracy.  However, it is quite difficult to obtain reliable 
performances at the end points and furthermore, realistic levels may require testing during con-
ditions that are potentially dangerous to human participants.  Thus, to fit a realistic approximation 
function to human data, the data need to be collected at a minimum of two points in the transition 
region between low (PC < 50%) and high (PC > 50%) intelligibility.  These data points are needed 
to estimate the ao and a1 parameters of the intelligibility growth function. 

The technique described was used to fit a function based on equation 7 to the CAT data.  Figure 4 
shows the resulting curves.  Table 2 lists the best fit estimates of the model parameters.  Inspec-
tion of figure 4 suggests that the slope of the three curves does not differ significantly and the 
changes in speech recognition performance attributable to background noise can be accounted for 
by changes in the offset parameter a0.  Table 3 shows the parameter values obtained for a0 if a1 is 
held constant at 0.25. 

Table 2.  Parameters obtained by fitting equation 7 to CAT speech recognition data. 

Noise 0a  1a  
Multi-talker Babble 2.4651 0.2388 

Pink 2.3341 0.2728 
White 3.4109 0.2381 

 
Table 3.  Parameters obtained by fitting equation 7 to CAT speech recognition data with  

fixed a1. 

Noise 0a  1a  
Multi-talker Babble 2.58 0.25 

Pink 2.13 0.25 
White 3.56 0.25 
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Figure 4.  Percent correct obtained for the CAT test as a function of SNR  

for three different background noises.  (Graphed lines represent  
the functions obtained by fitting equation 7 to the speech  
recognition data.) 

Inspection of the speech recognition data obtained for the W-22 items reveals that the slope was 
the same for each of the four test conditions but differed from that obtained for the CAT data.  
Table 4 shows the estimated parameter values for a0 when a1 is held constant at 0.10.  Once again, 
the differences in the testing conditions are accounted for by the offset a0.  

Note certain differences in tables 3 and 4 between the average a1 estimated for each of the data 
sets.  These differences are most likely attributable to the differences in speech material and some 
small high and low frequency differences in the spectral shape of the background noise resulting 
from the differences in the techniques used to equalize the headphone transfer functions in both 
studies.  

Table 4.  Logistic fit parameters of equation 7 for W-22 speech recognition data with fixed a1. 

Noise 0a  1a  
Binaural 1.30 0.1 
Monaural 0.62 0.1 

Binaural - Reverb 0.55 0.1 
Monaural - Reverb 0.14 0.1 

 
 

5. Modeling Binaural Speech Intelligibility 

Consideration of the estimated parameters illustrates the limitations of using SNR to predict SI.  
The parameters obtained will differ with every change in test condition (background noise, speech 
material used, or acoustic condition).  For a given SNR, SI will also vary, depending on the 
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position of the listener relative to the target speech and the position of the target speech relative to 
the position of the noise.  Therefore, in order to develop a useful objective metric of SI that is 
accurate during a number of conditions, it is necessary to consider binaural listening and to select 
some measurable aspect of the recorded waveform that varies as a function of these characteristics.  
To model binaural speech perception, we must be able to accurately predict the differences in SI 
for monaurally or binaurally presented speech during a variety of environmental conditions.  

The regression equation 1 can be used in multiple forms to find the empirical relationship between 
any number of measurable aspects of speech and listener speech recognition including SNR, as 
shown in equations 2 through 7.  The multiple regression form of the equation for PC(SNR) is 
written as 

 Xa−+
≡

101
100EPC , (8) 

in which X is the variable vector and a  is the parameter vector. 

One modeling effort attempted to fit the environmental data to successively higher order auto-
regression (AR) equations (Rabiner & Schafer, 1978).  AR separates the correlated components 
(speech) from the uncorrelated components (noise).  As the order of the AR equation increases  
(for example, from m to n) and greater proportions of a signal are accounted for by the correlated 
portion, the residual sum of squares gets smaller.  The change in the residual sum of squares for 
AR(m) to AR(n) is denoted as R(n,m).  SI was modeled as a function of this change by fitting equa-
tion 8 to the data, where X = [1   10log10(R(0,1)N  + 1)   10log10 (R(1,2) N  + 1)   SNR] and a = [a0   
a1   a2   a3]T was the parameter vector. 

This method worked well to distinguish between background noises that varied as a function of 
spectral content (see figure 5).  However, it predicted no differences in performance because of the 
presence of reverberation, and most importantly, it did not fit binaural data well (see figure 6).  
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Figure 5.  Predictions for monaural data in different steady state noise condi-

tions for the first model as compared with human performance data. 



15 

0

20

40

60

80

100

-9 -6 -3 0

Signal-to-Noise Ratio (dB)

Pe
rc

en
t C

or
re

ct
Binaural Reverb

Binaural

Monaural Reverb

Monaural

 
Figure 6.  Predictions for binaural data from the second model as compared with  

human performance data. 

A second modeling effort based on differences in low frequency sound energy was considered for  
fitting both the monaural and the binaural data.  Once again, equation 8 was used as a starting point  
but with X defined as [ ]SNRpMM )min()max(1=X  and a defined as [ ]T43210 aaaaa=a .  
The matrices X and a and the justifications for their use are described next. 

5.1 “M” 
Low frequency changes in the speech signal have been shown to disrupt speech recognition more 
than higher frequencies attributable to upward spread of masking.  Although most speech energy is 
contained in the frequency range between 300 and 3000 Hz, it can be argued that signal periodicity 
(with frequencies below 20 Hz) defines the temporal pattern of speech and is very critical to speech 
recognition.  A number of studies have shown that temporal information is more important for 
speech recognition than for spectral information (Drullman, Festen & Plomp, 1994a, 1994b).  
Drullman et al. found that periodic components around 4 to 6 Hz dominate speech recognition.  
Houtgast, Steeneken, and Plomp (1980) used low frequency amplitude modulation as a primary 
component in their measure of SI, the STI.  The argument is that noise, by reducing modulation, 
masks speech.  By measuring reduction in the depth of modulation for a number of frequencies 
between 0.4 Hz and 20 Hz, the degree to which speech recognition is impaired can be predicted.  
Therefore, it makes sense to consider low frequency signal energy in a model of SI.  If a large 
proportion of the overall energy is from frequencies below a certain cut-off, then a low-pass filter 
will remove much of the energy that is attributable to speech.  For a particular SNR, the ratio of 
low frequency energy to the overall energy will be large.  However, if there is more high frequency 
energy relative to the overall energy, that ratio will be smaller, suggesting that a larger proportion 
of the overall energy is attributable to speech.  Thus, SI will change as a function of this ratio for a 
particular SNR, based on the spectral content of the signal and the noise. 
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If low frequency energy from noise is detrimental to SI, then perhaps differences in this energy 
attributable to monaural and binaural listening are caused by the filtering effects of the head-
related transfer function (HRTF).  

Because reverberation attenuates higher frequencies and increases lower frequency energy, this 
ratio should reflect the effects of reverberation by increasing as reverberation increases.  In this 
way, a model based on the proportion of low frequency energy may be able to account for 
changes in SI attributable to reverberation. 

In order to account for the different effects of low frequency energy on intelligibility of monaurally 
and binaurally perceived speech, we modeled the low frequency effect of the HRTF as a second 
order Butterworth low-pass filter with a cut-off frequency of 100 Hz.  The frequency value of 
100 Hz was experimentally derived; it was the cut-off frequency that allowed for the best predic-
tion of the data from the sound files.  Subsequently, the variance of the total signal, 2

TOTσ , was 
compared to the variance of the filtered signal, 2

LPσ .  The resultant calculation of the relative 
energy of the LP signal is  

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 2

2

10log10
TOT

LPM
σ
σ  (9) 

We wish to clarify here that M is in no way related to the m referred to in the STI measure.  M in 
this model can be described as the proportion of low frequency energy relative to the entire signal 
for a particular channel (ear).  The m used in STI is the MTF and is equivalent to the SNR 
described in equation 6 except that SNR is described as a proportion rather than a percent. 

M is calculated for each channel (ear) independently.  Min(M) and max(M) refer to the smaller and 
larger of these two values.  By calculating M for each channel, the model may be able to capitalize 
on differences between the two ears for binaural signals.  If one ear has a better ear advantage 
(more favorable SNR), thus increasing M for that ear, the model can use this information to predict 
improved SI.  In the case of monaural or diotic data, the M value is the same for both channels.  

5.2 Number of Channels (p) 

A variable p (p = 1 or 2) is needed to inform the model if there are one or two channels of 
information. 

5.3 SNR 

Although monaural SNR, or SNR defined as the average SNR across both ears for binaural listen-
ing, is insufficient to predict SI, there is a clear relationship between SNR and SI for a given talker, 
talker effort, mode, acoustic condition, and spatial configuration.  Therefore, it is included in the 
model. 
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With the speech recognition data obtained for the W-22 speech items, the parameter vector a for 
the W-22 test data was found to be [ ]T0864.08481.12088.00398.05250.0 −−=a .  The predicted 
PCs described by this model are graphed with the actual performance data in figure 7.  The R-
squared value for the regression was 0.99, which is apparent from the close fit of the curves on  
the experimental data.  This figure demonstrates that listener responses to monaural and binaural 
stimuli presented in different reverberant conditions can be predicted from a single model.  
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Figure 7.  Estimated PC graphed with corresponding human performance data. 

Equation 8 can be fit to any speech recognition data set in order to obtain parameters that can be 
used to predict SI performance during the same conditions as the data collected.  It can also be 
used to predict SI (for the same speech material and the same testing environment) at SNRs other 
than the ones for which data have been obtained.  
 

6. Discussion 

SI, as found for the single set of data used in this study, was accurately modeled as a function of 
the selected variables: M, SNR, and the number of channels (p).  This model was able to account 
for the differences in SI because of the change in the reverberation time from 0 to 1.5 s.  It was 
also able to differentially model SI performance for binaurally and monaurally presented stimuli 
during the conditions tested in this study.  Thus, the obtained data may be considered as meeting 
the requirements of a “proof of concept”; however, much work is still needed to develop a more 
general model. 
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The predictive value of the present model is currently limited to the speech material and testing 
conditions used in this study, which limits the generalizability of the model.  It may be possible to 
“train” the model to other data sets in order to broaden its predictive value; however, this method 
would require a different set of parameters for each test condition.  This may be desirable or 
necessary in some cases.  For example, it is unlikely that a model based on recordings will accu-
rately predict performance differences attributable to differences in speech material used.  A 
different set of parameters may be needed to predict performance on each of the following:  
phonemes, syllables, words, sentences, short paragraphs, etc.  However, for differences in SI that 
are attributable to spatial features such as the position of the talker relative to the listener and noise 
source and the directionality of the noise source, it is preferable to obtain a variable(s) that describe 
how SI changes as a function of spatial layout.  It is currently unknown whether the M values can 
adequately account for changes in SI because of differences in spatial layout of the listening 
environment.  Similarly, the variables used in a model need to account for changes attributable to 
acoustics, such as changes in room size or reverberation time.  It is unknown whether M will 
continue to predict this for a large variety of spatial layouts.  More investigation is needed in order 
to verify that appropriate binaural information in the sound signal is incorporated into the model.   

This yet-to-be-determined variable may be in addition to M or it may replace it completely.  It is 
unclear whether M provides any useful information that is generalizable to other contexts because  
it is unclear why M changes as a function of whether hearing is binaural versus monaural.  Although 
low frequency sound energy should change as a function of the angle of entry into the ear canal 
because of reflectivity of the neck and torso and shadowing effects, the changes at higher frequen-
cies are much more significant for SI.  However, these changes should still be quite small compared 
to the overall variability in spectral energy.   

One could argue that the prediction of improved SI in the binaural recording conditions is solely 
attributable to the differences between the locations of the microphones during the recordings.  
Recall that for the monophonic recordings, a single microphone was positioned above the KEMAR 
oriented toward the front (0 degrees).  The binaural recordings were obtained through microphones 
at the position of the listener’s eardrums.  Therefore, the binaural recordings were shaped by the 
HRTFs whereas the monaural recordings were not.  The ability to differentiate between monaural 
and binaural signals through low-pass filtering at 100 Hz would only hold true for this recording 
paradigm.  Had the participants listened through each channel (ear) of the binaural recording 
separately plus through the true binaural recording, more realistic comparisons between the two 
conditions might have been made, but this may have also forced changes in how the model was 
created to differentiate between the two types of signals.  Further data collection and analyses will 
need to be conducted in order to refute or verify this assertion. 

Furthermore, it will be necessary to ascertain whether the differences in low frequency energy are 
not entirely attributable to technical factors that affected the recordings used for the collection of 
human speech recognition data.  For example, the frequency range of the monaural microphone 
was approximately 3.5 Hz to 20 kHz and the frequency range of the microphones used in the 
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KEMAR is approximately 250 Hz to 10 kHz.  Therefore, the amount of low frequency energy 
recorded by the KEMAR is necessarily much smaller.  This has the effect of filtering most of the 
low frequency energy before the low-pass filter is used and M is artificially lowered.  It is unlikely 
that the low-pass filter was capturing loss of SI attributable to loss of low frequency information.  
Despite these serious limitations of M, it was possible to model SI performance in different rever-
beration conditions.  It is likely that the predictive power of the model for the differences in SI for 
monaural and binaural stimuli is attributable to the p variable.  This limits the potential for the use 
of M to predict SI for a variety of spatial layouts.   

Since binaural facilitation for SI is probably attributable to the use of spatial cues to segregate 
speech from noise, the ideal alternative to M is to use a variable that captures these binaural cues.  
Specifically, such a variable would need to incorporate phase and level differences between the 
ears.  Bharitkar and Kyriakakis (2006) describe a method of creating three-dimensional (3-D) 
sound by creating a transfer function that reproduces the sound that occurs in one ear by filtering 
the sound that occurs in the other ear.  Although our purpose is not to create 3-D sound, this filter 
contains the binaural information we need.  Because the filter described is minimum phase, all 
phase information is preserved.  If the phase information for the low frequency portion (100 to 
1500 Hz) of the signal could be extracted, it could serve as a variable for use in the regression 
equation describe in equation 8.  As long as sufficient low frequency energy is present in the 
speech signal (speech is usually in the range of 300 to 3000 Hz), the phase information present in 
the filter would be sufficient to spatially separate speech from a diffuse background noise.   

Although binaural cues are insufficient to precisely localize a sound in azimuth, they are sufficient 
to localize a sound horizontally in the front (or rear) hemisphere.  This would allow us to predict 
variations in SI as a function of the spatial relationship because it is unlikely that SI is different in 
the front and back.  Some additional precision might be achieved if we look at the level differences 
in the frequency range between 1 and 3 kHz.  Figure 8 shows the interaural level differences for a 
sound source at three azimuthal positions.  However, since these differences are in the range of 0 
to 10 dB, it may be a bit more difficult to detect these differences reliably when speech is 
combined with a noisy background.  Some investigation is necessary to determine whether it can 
be used as a variable in the model.   
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Figure 8.  Interaural level differences, calculated for a source in the azimuthal plane 

defined by the two ears and the nose.  (The source radiates frequency f and is 
located at an azimuth q of 10 degrees [green curve], 45 degrees [red], or 90 
degrees [blue] with respect to the listener’s forward direction.  The calculations 
assume that the ears are at opposite poles of a rigid sphere [Hartmann, 1999].) 

 

7. Conclusions and Recommendations 

A regression equation with binaural summation was used to describe speech recognition perform-
ance based on human performance data.  This relationship provides a link between human per-
formance and several signal properties, namely, low frequency content, number of channels, 
reverberation, and SNR. 

Currently, the model has only been fit to one set of human speech recognition performance data, 
and the parameter estimates depend on the specific characteristics of these data.  These parameter 
estimates require validation by testing on other data collected during similar circumstances as well 
as investigations to eliminate technical factors that could have influenced the results.  

Other environmental factors should be investigated in order to create a more universal model and 
allow for the development of a binaural speech metric based on speech recordings made in back-
ground noise.  For example, the spatial location of the speech source with respect to the noise 
source, the amplitude distribution function of noise, and the rate of speech may also contribute  
to speech recognition scores.  
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The present work was also naturally limited by the use of only one type of background noise.  
Further work in model development should include fitting data sets (obtained during similar testing 
conditions) of monaural and binaural human performance on speech presented with different back-
ground noises and with different amounts of reverberation.  
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Appendix A.  Logistic Function Parameter Estimation 

The parameters of the logistic functions can be estimated by various logistic regression techniques.  
Logistic regression can be expressed as a linear regression of transformed response variables.  Two 
common transformations of response variables are logit and probit transformations.  However, if 
the variables actually include 1 or 0, the logit transformation is undefined.  Using nonlinear least 
squares (NLS) estimation techniques does not require transformation of the data and thereby allows 
estimation of the parameters without concern for extreme data values (inclusive of 0 or 1).  Curves 
with NLS-generated parameters also often fit the data closer than those using logit or probit trans-
formation, thus making its use preferable here.   

The parameter estimation in this report used the following procedure used to fit the ARL listener 
data to the logistic function to the W-22 speech recordings. 

The listener results were recorded as averages for the different test conditions, defined as the 
response vector Y.  The average signal properties during these test conditions were then calculated 
and recorded in the prediction vector X.  The columns of this vector were defined as the following 
measured parameters:  constant, max(M), min(M), number of channels, and SNR.  The subscripts 
on the average signal properties M were for the different test conditions (1 = mono, 2 = mono + 
reverb, 3 = stereo, 4 = stereo + reverb).   
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A multidimensional unconstrained nonlinear minimization routine was used to estimate the 
parameter vector a  in the regression formulation (FMINSEARCH using the Nelder-Mead simplex 
direct search method in MATLAB16).  The objective function was the sum of squares of the error 
(SSE) between the predicted value and the actual values of the response variable.  

                                                 
16MATLAB is registered trademark of the MathWorks. 
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The initial values of the parameters, a, were considered zero for this NLS routine.  The R-squared 
value was calculated by the following formulation: 

 
( )∑

∑ ⎟
⎠

⎞
⎜
⎝

⎛
+=

−

2

2

2 101
100

Y

Xa
R  (A-3) 

 

 



27 

NO. OF 
COPIES ORGANIZATION 
 
 1 DEFENSE TECHNICAL 
 (PDF INFORMATION CTR 
 ONLY) DTIC OCA 
  8725 JOHN J KINGMAN RD 
  STE 0944 
  FORT BELVOIR VA 22060-6218 
 
 1 US ARMY RSRCH DEV & ENGRG CMD 
  SYSTEMS OF SYSTEMS 
  INTEGRATION 
  AMSRD SS T 
  6000 6TH ST STE 100 
  FORT BELVOIR VA  22060-5608 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  IMNE ALC IMS 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CI OK TL 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 2 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CS OK T 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR M   DR M STRUB 
  6359 WALKER LANE SUITE 100 
  ALEXANDRIA VA 22310 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR ML   J MARTIN 
  MYER CENTER  RM 2D311 
  FT MONMOUTH   NJ  07703-5601 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MZ   A DAVISON 
  199 E 4TH ST STE C TECH PARK BLDG 2 
  FT LEONARD WOOD  MO  65473-1949 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MD   T COOK 
  BLDG 5400 RM C242 
  REDSTONE ARSENAL AL   35898-7290 
 
 
 
 

NO. OF 
COPIES ORGANIZATION 
 
 1 COMMANDANT USAADASCH 
  ATTN ATSA CD 
  ATTN AMSRD ARL HR ME MS A MARES 
  5800 CARTER RD 
  FT BLISS TX 79916-3802 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MO  J MINNINGER 
  BLDG 5400 RM C242 
  REDSTONE ARSENAL AL   35898-7290 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MM DR V RICE 
  BLDG 4011 RM 217 
  1750 GREELEY RD 
  FT SAM HOUSTON TX 78234-5094 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN  AMSRD ARL HR MG  R SPINE 
  BUILDING 333 
  PICATINNY ARSENAL  NJ   07806-5000 
 
 1 ARL HRED  ARMC FLD ELMT 
  ATTN AMSRD ARL HR MH  C BURNS 
  BLDG 1467B  ROOM 336 
  THIRD AVENUE 
  FT KNOX  KY  40121 
 
 1 ARMY RSCH LABORATORY - HRED 
  AVNC FIELD ELEMENT 
  ATTN AMSRD ARL HR MJ D DURBIN 
  BLDG 4506 (DCD) RM 107 
  FT RUCKER  AL  36362-5000  
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MK MR J REINHART 
  10125 KINGMAN RD 
  FT BELVOIR VA 22060-5828 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MV HQ USAOTC 
   S MIDDLEBROOKS 
  91012 STATION AVE  ROOM 111 
  FT HOOD TX   76544-5073 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MY  M BARNES 
  2520 HEALY AVE STE 1172 BLDG 51005 
  FT HUACHUCA AZ  85613-7069 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MP  D UNGVARSKY 
  BATTLE CMD BATTLE LAB 
  415 SHERMAN AVE UNIT 3 
  FT LEAVENWORTH KS  66027-2326 



28 

NO. OF 
COPIES ORGANIZATION 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MJK   J HANSBERGER 
  JFCOM JOINT EXPERIMENTATION  J9 
  JOINT FUTURES LAB 
  115 LAKEVIEW PARKWAY SUITE B 
  SUFFOLK VA  23435 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MQ M R FLETCHER 
  US ARMY SBCCOM  NATICK SOLDIER CTR  
  AMSRD NSC SS E    BLDG 3 RM 341 
  NATICK  MA  01760-5020 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MY  DR J CHEN 
  12423 RESEARCH PARKWAY 
  ORLANDO FL  32826 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MS MR C MANASCO 
  SIGNAL TOWERS  118 MORAN HALL 
  FORT GORDON  GA  30905-5233 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MU  M SINGAPORE 
  6501 E 11 MILE RD MAIL STOP 284 
  BLDG 200A 2ND FL RM 2104 
  WARREN  MI  48397-5000 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MF MR C HERNANDEZ 
  BLDG 3040  RM 220 
  FORT SILL  OK  73503-5600 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MW  E REDDEN 
  BLDG 4  ROOM 332 
  FT BENNING  GA  31905-5400 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN  AMSRD ARL HR MN  R SPENCER 
  DCSFDI HF 
  HQ USASOC BLDG E2929 
  FORT BRAGG  NC   28310-5000 
 
 1 ARMY G1 
  ATTN DAPE MR  B KNAPP 
  300 ARMY PENTAGON ROOM 2C489 
  WASHINGTON DC 20310-0300 
 
 
 
 
 
 

NO. OF 
COPIES ORGANIZATION 
 
 
  ABERDEEN PROVING GROUND 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL CI OK (TECH LIB) 
  BLDG 4600 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL CI OK S FOPPIANO 
  BLDG 459  
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN AMSRD ARL HR MR   F PARAGALLO 
  BLDG 459 
 
 20 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL HR SD  A SCHARINE 
  BLDG 520  APG AA 
 
 
 


